ImageNet Classification with Deep Convolutional Neural Networks

Speaker: 吴良超

Members: 何君婷, 吕慧雅, 张豫, 罗彭婷, 巢娅, 谢澈澈, 邹敏艳, 黄婷, 李超然, 吴良超, 孙伯毅

Outline

- Basis of CNN
- > Design of the Network
- > Training of the Network
- Performance of the Network
- > Why it works

Outline

Basis of CNN

Design of the Network

> Training of the Network

Performance of the Network

> Why it works

Basis of CNN

CNN: abbreviation of Convolutional Neural Network

- feed-forward network, layer by layer
- special connectivity pattern
 - convolutional layer
 - pooling layer
 - ReLU layer
 - fully connected layer

Basis of CNN – Convolutional Layer

kernel/filter

- Convolution: dot product between kernel and input
- Activation map: result of convolution
- feature extraction

multiple kernels

Basis of CNN – Convolutional Layer

channels of RBG image

◆3 channels, 2 kernels

one kernel -> one activation map

Source: http://cs231n.github.io/convolutional-networks/#conv

Basis of CNN – Pooling Layer

pooling : a form of non-linear down-sampling

different ways: max pooling, average pooling....

reduce the number of parameters and amount of computation

control overfitting

• overlapping pooling

max pooling with a 2x2 kernel and stride = 2

max pooling with a 2x2 kernel and stride = 1

Basis of CNN – ReLU Layer

◆ ReLU : abbreviation of Rectified Linear Units

One kind of activation function

Increases the nonlinear properties of the decision function

Basis of CNN – Fully Connected Layer

regular neural network

•full connections to all neurons in the previous layer

•usually at the last layer of the network as output

Outline

Basis of CNN

Design of the Network

> Training of the Network

Performance of the Network

> Why it works

Overview of the Network

- ◆5 convolutional layers + 3 fully connected layers, train on two GPUs
- ◆max polling after the 1st, 2nd, 5th convolutional layer
- ReLU activation after each convolutional layer and fully connected layer
- ◆also called Alexnet

Important Features of the Network

◆ ReLU Nonlinearity

◆ Local Response Normalization

Overlapping Pooling

ReLU Nonlinearity

comparision of activation function: tanh, sigmoid, ReLU

◆ ReLU converges faster than the other two

sigmoid, tanh suffers from vanishing gradient

Local Response Normalization

normalize the output after ReLU

• $a_{x,y}^i$: output of kernel *i* at position (*x*, *y*) after ReLU

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

 $\mathbf{k}, n, \alpha, \beta$ are hyper-parameters determined by validation

Applied after the first two convolutional layers

reduces top-1 and top-5 error rates by 1.4% and 1.2%, respectively

Overlapping Pooling

◆ reduces the top-1 and top-5 error rates by 0.4% and 0.3%, respectively;

1	2	1	4
0	0	з	0
1	2	0	0
0	0	0	0

Outline

Basis of CNN

Design of the Network

> Training of the Network

Performance of the Network

> Why it works

Training of the Network

- objective function
- training algorithm
- training on multiple GPUs
- reducing overfitting

Objective Function – Softmax

- target of the task : classification of 1000 categories
- multiple classification with softmax
 - z : K-dimensional vector of arbitrary real values

softmax
$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j=1,...,k$

• $\sigma(z)$: K-dimensional vector of real values in the range (0, 1) that add up to 1

 $\mathbf{\Phi}\sigma(z)$ can be used to represent a probability distribution of categories

Objective Function – Maximum Likelihood

- $\sigma(z)$: probability distribution of categories
- maximum log likelihood(m samples, k categories)

$$\operatorname{max}\sum_{i=1}^{m}\sum_{j=1}^{k}1\{y^{(i)}=j\}\log\frac{e^{z_j}}{\sum_{l=1}^{k}e^{z_l}}\qquad 1\{\operatorname{True}\}=1, 1\{\operatorname{False}\}=0\\ e.g. 1\{2=3\}=0, 1\{3=3\}=1\\$$

$$\operatorname{min}-\sum_{i=1}^{m}\sum_{j=1}^{k}1\{y^{(i)}=j\}\log\frac{e^{z_j}}{\sum_{l=1}^{k}e^{z_l}}\\$$

$$\operatorname{min}-\frac{1}{m}\sum_{i=1}^{m}\sum_{j=1}^{k}1\{y^{(i)}=j\}\log\frac{e^{z_j}}{\sum_{l=1}^{k}e^{z_l}}\\$$

$$\operatorname{unconstrained optimization problem}$$

Training Algorithm – Stochastic Gradient Descent

- SGD with momentum, weight decay and batch size
- momentum: update the current total gradient with previous one
- weight decay: L2 regularization
- ◆ batch size: more than one sample at each update
- ♦ update rule

$$\begin{aligned} v_{i+1} &:= & 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \left\langle \frac{\partial L}{\partial w} \Big|_{w_i} \right\rangle_{D_i} \\ w_{i+1} &:= & w_i + v_{i+1} \end{aligned}$$

i - iteration index v_i - momentum variable/total gradient ϵ - learning rate, step size

 $\left\langle \frac{\partial L}{\partial w} |_{w_i} \right\rangle_{D_i}$ average gradient over the batch D_i

Training on Multiple GPUs

- read and write on GPU's memory , independent of host machine memory
- single GPU limits the maximum size of the networks can be trained
- communicate only in certain layers for cross-validation

compared to one GPU, reduces top-1 and top-5 error rates by 1.7% and 1.2%, respectively

Reducing Overfitting

♦ data augmentation

♦ dropout

Reducing Overfitting – Data Augmentation

igoplus extract multiple random 224 imes 224 patches from the raw 256 imes 256 images

◆ at each pixel, add extra information obtained from PCA on the image

◆ reduce the top-1 error rate by over 1%

Reducing Overfitting – Dropout

- setting the output of each hidden neuron to zero with probability 0.5
- reduces complex co-adaptations of neurons, more robust
- apply dropout in the first two fully-connected layers

Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

Outline

Basis of CNN

Design of the Network

> Training of the Network

Performance of the Network

> Why it works

Dataset

- ImageNet (http://image-net.org/)
- competition: ImageNet Large-Scale Visual Recognition Challenge(ILSVRC)
- offer 1000 images in each of 1000 categories
- roughly 1.2 million training images, 50,000 validation images, and

150,000 testing images

Result

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Outline

Basis of CNN

> Design of the Network

> Training of the Network

Performance of the Network

> Why it works

Why it works

- ♦ it works -> small generalization error
- theoretical guarantee about the error
- VC dimension (statistical machine learning)

good generation performance requires the ratio of the number of samples to

the number of parameters should be roughly greater than 10

$$\frac{\#samples}{\#parameters} \ge 10$$

60 million parameters, 1.25 million samples(training + validation)

VC dimension doesn't seem to work on the network

Why it works

• Understanding Deep Learning Requires Rethinking Generalization^[1], best paper in ICLR 2017

• bigger model, smaller $\frac{\#sample}{\#parameter}$, but smaller generalization error

new theory need to be proposed to explain this problem

[1]: Zhang C, Bengio S, Hardt M, et al. Understanding deep learning requires rethinking generalization[J]. arXiv preprint arXiv:1611.03530, 2016.

Thank you for listening