A Survey of Multi-Domain
在实际的业务中,数据往往由多个 domain 组成,以广告为例,往往会存在多个转化目标,在 ctr、cvr 的预估时也要考虑不同转化目标的影响,因为在不同转化目标下,ctr、cvr 的分布(如均值、方差)往往是不一致的
解决这个问题最直观的思路是加 domain 相关特征或根据 domain 拆模型,前者属于隐式的方法,需要特征的区分性足够强、能被模型学到,但这个足够强没有一个量化的标准,基本只能看实验效果;后者则存在维护成本过高的问题,比如说有 n 个 domain 就要拆成 n 个模型
本文着重讲如何通过一个模型 serve 多个 domain 的方法,主要是在业界验证有收益且公开发表的工作,基本上可以分为 3 类
- multi-head 结构
- LHUC 机制
- GRL 机制